Skip to content

HTML templating with niivue #10

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 5 commits into
base: master
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
135 changes: 135 additions & 0 deletions discussions/niivue_integration/surface_html_templating.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
# %%
import base64
import string

from pathlib import Path

import nibabel as nib
import numpy as np

from nilearn import datasets, surface
from nilearn.plotting import html_document

# %%
output_path = Path("/home/alexis/singbrain/data/tmp")

# %%
fsaverage = datasets.fetch_surf_fsaverage(mesh="fsaverage7")

# %%
# Save pial map
pial_left = surface.load_surf_mesh(fsaverage.pial_left)
pial_left_path = output_path / "pial_left.gii"

gifti_image = nib.gifti.GiftiImage()
gifti_image.add_gifti_data_array(
nib.gifti.GiftiDataArray(pial_left[0], "NIFTI_INTENT_POINTSET")
)
gifti_image.add_gifti_data_array(
nib.gifti.GiftiDataArray(pial_left[1], "NIFTI_INTENT_TRIANGLE")
)
nib.save(gifti_image, pial_left_path)

# %%
# Create curv sign map
curv_sign_left = (np.sign(surface.load_surf_data(fsaverage.curv_left)) + 1) / 2
curv_sign_left_path = output_path / "curv_sign_left.gii"

gifti_image = nib.gifti.GiftiImage()
gifti_image.add_gifti_data_array(
nib.gifti.GiftiDataArray(curv_sign_left, "NIFTI_INTENT_NONE")
)
nib.save(gifti_image, curv_sign_left_path)


# %%
motor_images = datasets.fetch_neurovault_motor_task()
stat_img = motor_images.images[0]
surface_map = surface.vol_to_surf(stat_img, fsaverage.pial_left)

# %%
surface_map_path = output_path / "surface_map.gii"

img = nib.gifti.gifti.GiftiImage()
img.add_gifti_data_array(
nib.gifti.gifti.GiftiDataArray(
surface_map,
intent="NIFTI_INTENT_ZSCORE",
)
)
nib.save(img, surface_map_path)

# %%
# <!-- url: "http://0.0.0.0:8000/surface_map.gii", -->
template = string.Template(
"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>NiiVue</title>
<link rel="stylesheet" href="https://niivue.github.io/niivue/features/niivue.css">
</head>
<body>
<canvas id="gl"></canvas>
</body>
<script src="https://niivue.github.io/niivue/features/niivue.umd.js"></script>
<script type="module" async>
var nv = new niivue.Niivue();
nv.attachTo('gl');
let layers = [
{
name: "bg_map.gii",
useNegativeCmap: true,
opacity: 0.7,
colorMap: "gray",
base64: "$bg_map",
},
{
name: "surface_map.gii",
useNegativeCmap: true,
opacity: 0.7,
cal_min: $threshold,
base64: "$surf_map",
},
];
let m = await niivue.NVMesh.loadFromBase64({
gl: nv.gl,
name: "pial_left.gii",
layers: layers,
base64:"$surf_mesh"
});
nv.addMesh(m);
</script>
</html>
"""
)

# %%
encoded = {}

# %%
encoded["surf_mesh"] = base64.b64encode(
pial_left_path.read_bytes()
).decode("UTF-8")

# %%
encoded["surf_map"] = base64.b64encode(
surface_map_path.read_bytes()
).decode("UTF-8")

# %%
encoded["threshold"] = 3

# %%
encoded["bg_map"] = base64.b64encode(
curv_sign_left_path.read_bytes()
).decode("UTF-8")

# %%
display = html_document.HTMLDocument(template.safe_substitute(encoded))

# save for later:
display.save_as_html("/home/alexis/singbrain/data/tmp/niivue_plot.html")

# %%
117 changes: 117 additions & 0 deletions discussions/niivue_integration/view_anat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
# %%
import base64
import json
import string

from pathlib import Path

from nilearn import datasets
from nilearn.plotting import html_document
from nilearn.plotting.img_plotting import _MNI152Template

# %%
output_path = Path("/home/alexis/singbrain/data/tmp")

# %%
localizer_dataset = datasets.fetch_localizer_button_task(legacy_format=False)
# Contrast map of motor task
localizer_tmap_filename = Path(localizer_dataset.tmap)
# Subject specific anatomical image
localizer_anat_filename = Path(localizer_dataset.anat)
# localizer_anat_filename = Path(datasets.MNI152_FILE_PATH)
localizer_anat_filename
localizer_tmap_filename

# %%
MNI152TEMPLATE = _MNI152Template()


# %%
def view_anat(
anat_img,
# cut_coords=None, # Seems to be missing from niivue
threshold=None,
draw_cross=True,
# cmap=plt.cm.gray,
# colorbar=False,
):
template = string.Template(
"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>NiiVue</title>
<link rel="stylesheet" href="https://niivue.github.io/niivue/features/niivue.css">
</head>
<body>
<noscript>
<strong>niivue requires JavaScript.</strong>
</noscript>
<main>
<canvas id="gl1"></canvas>
</main>
<footer id="location">&nbsp;</footer>
<script src="https://niivue.github.io/niivue/features/niivue.umd.js"></script>
<script type="module" async>
function handleLocationChange(data) {
document.getElementById("location").innerHTML =
"&nbsp;&nbsp;" + data.string;
}
var nv = new niivue.Niivue({
loadingText: "Loading...",
backColor: [1, 1, 1, 1],
show3Dcrosshair: $draw_cross,
onLocationChange: handleLocationChange,
});
nv.setRadiologicalConvention(false);
nv.attachTo("gl1");
nv.setSliceType(nv.sliceTypeMultiplanar);
nv.setSliceMM(false);
nv.opts.isColorbar = true;
let anat = niivue.NVImage.loadFromBase64({
name: "bg_map.nii.gz",
base64: "$anat_img",
cal_min: $threshold,
cal_max: 10000,
});
nv.addVolume(anat);
nv.volumes[0].cal_minNeg = -10000;
nv.volumes[0].cal_maxNeg = -$threshold;
nv.opts.multiplanarForceRender = true;
nv.setInterpolation(true);
nv.updateGLVolume();
</script>
</body>
</html>
"""
)

encoded = {}

encoded["anat_img"] = base64.b64encode(anat_img.read_bytes()).decode(
"UTF-8"
)

encoded["draw_cross"] = "true" if draw_cross else "false"

encoded["threshold"] = "null" if threshold is None else threshold

display = html_document.HTMLDocument(template.safe_substitute(encoded))

return display


# %%
display = view_anat(
localizer_anat_filename,
threshold=None,
draw_cross=True,
)

display.save_as_html("/home/alexis/singbrain/data/tmp/niivue_plot_anat.html")
120 changes: 120 additions & 0 deletions discussions/niivue_integration/volume_html_templating.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# %%
import base64
import string

from pathlib import Path

import nibabel as nib
import numpy as np

from nilearn import datasets, image, surface
from nilearn.plotting import html_document

# %%
output_path = Path("/home/alexis/singbrain/data/tmp")

# %%
localizer_dataset = datasets.fetch_localizer_button_task(legacy_format=False)
# Contrast map of motor task
localizer_tmap_filename = Path(localizer_dataset.tmap)
# Subject specific anatomical image
localizer_anat_filename = Path(localizer_dataset.anat)
# localizer_anat_filename = Path(datasets.MNI152_FILE_PATH)
localizer_anat_filename
localizer_tmap_filename

# %%
template = string.Template(
"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>NiiVue</title>
<link rel="stylesheet" href="https://niivue.github.io/niivue/features/niivue.css">
</head>
<body>
<noscript>
<strong>niivue requires JavaScript.</strong>
</noscript>
<main>
<canvas id="gl1"></canvas>
</main>
<footer id="location">&nbsp;</footer>
<script src="https://niivue.github.io/niivue/features/niivue.umd.js"></script>
<script type="module" async>
function handleLocationChange(data) {
document.getElementById("location").innerHTML =
"&nbsp;&nbsp;" + data.string;
}
var nv = new niivue.Niivue({
loadingText: "there are no images",
backColor: [1, 1, 1, 1],
show3Dcrosshair: true,
onLocationChange: handleLocationChange,
});
nv.setRadiologicalConvention(false);
nv.attachTo("gl1");
nv.setSliceType(nv.sliceTypeMultiplanar);
nv.setSliceMM(false);
nv.opts.isColorbar = true;
let bg = niivue.NVImage.loadFromBase64({
name: "bg_map.nii.gz",
base64: "$bg_img",
colorbarVisible: false,
});
nv.addVolume(bg);
nv.volumes[0].colorbarVisible = false;
let v = niivue.NVImage.loadFromBase64({
name: "stat_map_img.nii.gz",
base64: "$stat_map_img",
colorMap: "warm",
cal_min: $threshold,
cal_max: 6,
});
nv.addVolume(v);
nv.volumes[1].colorMapNegative = "winter";
nv.volumes[1].alphaThreshold = true;
nv.volumes[1].cal_minNeg = -6;
nv.volumes[1].cal_maxNeg = -$threshold;
nv.opts.multiplanarForceRender = true;
nv.setInterpolation(true);
nv.updateGLVolume();
</script>
</body>
</html>
"""
)

# %%
encoded = {}

# %%
encoded["bg_img"] = base64.b64encode(
localizer_anat_filename.read_bytes()
).decode("UTF-8")

# %%
encoded["stat_map_img"] = base64.b64encode(
localizer_tmap_filename.read_bytes()
).decode("UTF-8")

# %%
encoded["threshold"] = 3

# %%
display = html_document.HTMLDocument(template.safe_substitute(encoded))

# save for later:
display.save_as_html(
"/home/alexis/singbrain/data/tmp/niivue_plot_surf_map.html"
)

# %%