- 🌱 I’m currently a researcher at DeepSeek AI. Before that, I received my Ph.D. and Bachelor’s degree at Peking University in 2024 and 2019.
- 🔭 I’m currently working on Multimodal Large Language Models (MLLM). Previous interests are in Self-supervised Learning and Scene Understanding tasks, such as Semantic Segmentation and Object Detection.
- ⚡ My personal website: https://charlesCXK.github.io
- 📫 How to reach me: [email protected]
🎯
Focusing
Researcher at DeepSeek AI.
<-- Ph.D. student at Peking University
-
DeepSeek AI, Peking University
- Beijing
- charlesCXK.github.io
Highlights
- Pro
Pinned Loading
-
deepseek-ai/Janus
deepseek-ai/Janus PublicJanus-Series: Unified Multimodal Understanding and Generation Models
-
deepseek-ai/DeepSeek-VL2
deepseek-ai/DeepSeek-VL2 PublicDeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding
-
Atten4Vis/ConditionalDETR
Atten4Vis/ConditionalDETR PublicThis repository is an official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence". (https://arxiv.org/abs/2108.06152)
-
TorchSemiSeg
TorchSemiSeg Public[CVPR 2021] CPS: Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
-
RGBD_Semantic_Segmentation_PyTorch
RGBD_Semantic_Segmentation_PyTorch Public[ECCV 2020] PyTorch Implementation of some RGBD Semantic Segmentation models.
27 contributions in the last year
Skip to contributions year listDay of Week | July Jul | August Aug | September Sep | October Oct | November Nov | December Dec | January Jan | February Feb | March Mar | April Apr | May May | June Jun | July Jul | ||||||||||||||||||||||||||||||||||||||||
Sunday Sun | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Monday Mon | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Tuesday Tue | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Wednesday Wed | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Thursday Thu | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Friday Fri | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Saturday Sat |
Less
No contributions.
Low contributions.
Medium-low contributions.
Medium-high contributions.
High contributions.
More