Skip to content

Nautobot may allows uploaded media files to be accessible without authentication

Moderate severity GitHub Reviewed Published Jun 10, 2025 in nautobot/nautobot • Updated Jun 10, 2025

Package

pip nautobot (pip)

Affected versions

< 1.6.32
>= 2.0.0, < 2.4.10

Patched versions

1.6.32
2.4.10

Description

Impact

Files uploaded by users to Nautobot's MEDIA_ROOT directory, including DeviceType image attachments as well as images attached to a Location, Device, or Rack, are served to users via a URL endpoint that was not enforcing user authentication. As a consequence, such files can be retrieved by anonymous users who know or can guess the correct URL for a given file.

For DeviceType image attachments, a mitigating factor is that no URL endpoint exists for listing the contents of the devicetype-images/ subdirectory, and the file names are as specified by the uploading user, so any given DeviceType image attachment can only be retrieved by correctly guessing its file name.

Similarly, for all other image attachments, while the images can be listed by accessing the /api/extras/image-attachments/ endpoint as an authenticated user only, absent that authenticated access, accessing the files would again require guessing file names correctly.

Patches

Nautobot v2.4.10 and v1.6.32 will address this issue by adding enforcement of Nautobot user authentication to this endpoint.

Workarounds

No workaround other than applying the patch given in nautobot/nautobot#6672 (2.x) or nautobot/nautobot#6703 (1.6)

References

Are there any links users can visit to find out more?

References

@glennmatthews glennmatthews published to nautobot/nautobot Jun 10, 2025
Published by the National Vulnerability Database Jun 10, 2025
Published to the GitHub Advisory Database Jun 10, 2025
Reviewed Jun 10, 2025
Last updated Jun 10, 2025

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity High
Attack Requirements Present
Privileges Required None
User interaction None
Vulnerable System Impact Metrics
Confidentiality Low
Integrity None
Availability None
Subsequent System Impact Metrics
Confidentiality Low
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:H/AT:P/PR:N/UI:N/VC:L/VI:N/VA:N/SC:L/SI:N/SA:N

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(25th percentile)

Weaknesses

CVE ID

CVE-2025-49143

GHSA ID

GHSA-rh67-4c8j-hjjh

Source code

See something to contribute? Suggest improvements for this vulnerability.