Virtual assistant with RAG capabilities to help chinese students learn more efficiently. The system grounds itself with HSK1-3 textbook content when setting questions, presenting examples with the same flavour and level of difficulty as the HSK textbook.
The project makes use of the following technologies
- flask framework
- mongodb database
- google genai
- all-MiniLM-L6-v2 model
- vector search
- AI recommendations
- Generate sample questions,
- Create study plan for student according to hsk level
-
Clone this repository:
git clone https://github.com/M-kip/ChineseVirtualTeacher cd ChineseVirtualTeacher
-
Create a virtual environment and install dependencies:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate pip install -r requirements.txt
-
Initialize the database:
flask --app run init-db
-
Run the development server:
flask --app run run --debug
├── app/
│ ├── __init__.py
│ ├── routes/
│ │ ├── __init__.py
│ │ └── main.py
│ ├── models/
│ │ ├── __init__.py
│ │ └── user.py
│ ├── services/
│ │ ├── __init__.py
│ │ └── recipe_service.py
│ ├── templates/
│ │ └── index.html
│ ├── static/
│ └── config.py
├── migrations/
├── tests/
│ └── test_basic.py
├── models/
│ ├── __init__.py
│ └──db.py
│ └──load_docs.py
│ └──vector_search.py
├── .env
├── requirements.txt
├── run.py
└── README.md
MIT License. See LICENSE file for details.
Contributions, issues, and feature requests are welcome! Feel free to check the issues page.
Built with:
- Django
- MongoDB Database
- Google generativeAI
- sentence-transformers/all-MiniLM-L6-v2