|
โจ ๐ฅ Heterogeneous Graph Intelligence | โก Latent Diffusion | ๐ Noise Denoising ๐ โจ
๐ Advancing Heterogeneous Graph Intelligence through Novel Latent Diffusion Strategies
"In the labyrinth of heterogeneous data, where noise corrupts truth and complexity obscures patterns, DiffGraph emerges as the quantum leap in graph intelligence - wielding the power of latent diffusion to transform chaos into clarity."
๐ฅ Component | ๐ฎ Technology | ๐ฏ Breakthrough |
---|---|---|
Latent Diffusion Engine | Gaussian Noise Injection + Progressive Denoising | Eliminates heterogeneous noise while preserving semantic integrity |
Cross-View Semantic Fusion | Auxiliary-to-Target Graph Transformation | Maximizes mutual information across graph modalities |
Quantum GCN Layers | Multi-relational Message Passing | Captures complex heterogeneous transitions |
Neural Denoising Network | Time-Conditioned MLP Architecture | Reconstructs pure graph representations |
Task | Dataset | Best Baseline | DiffGraph | Improvement |
---|---|---|---|---|
Link Prediction | Tmall | 0.0463 (R@20) | 0.0589 | +27.21% โก |
Retail Rocket | 0.0524 (R@20) | 0.0620 | +18.32% ๐ | |
IJCAI | 0.0136 (R@20) | 0.0171 | +25.74% ๐ | |
Node Classification | DBLP | 91.97% (Micro-F1) | 93.81% | +2.00% ๐ |
AMiner | 82.46% (Micro-F1) | 83.29% | +1.01% ๐ฏ | |
Industry | 79.82% (AUC) | 80.25% | +0.54% ๐ช |
๐ Click to expand detailed results
Dataset | Metric | MATN | HGT | MBGCN | DiffGraph | Gain |
---|---|---|---|---|---|---|
Tmall | Recall@20 | 0.0463 | 0.0431 | 0.0419 | 0.0589 | +27.21% |
NDCG@20 | 0.0197 | 0.0192 | 0.0179 | 0.0274 | +39.09% | |
Retail Rocket | Recall@20 | 0.0524 | 0.0413 | 0.0492 | 0.0620 | +18.32% |
NDCG@20 | 0.0302 | 0.0250 | 0.0258 | 0.0367 | +21.52% | |
IJCAI | Recall@20 | 0.0136 | 0.0126 | 0.0112 | 0.0171 | +25.74% |
NDCG@20 | 0.0054 | 0.0051 | 0.0045 | 0.0063 | +16.67% |
Dataset | Setting | Best Baseline | DiffGraph | Metric |
---|---|---|---|---|
DBLP | 60 per class | HeCo: 91.59ยฑ0.2 | 93.81ยฑ0.3 | Micro-F1 |
60 per class | HeCo: 98.59ยฑ0.1 | 99.21ยฑ0.1 | AUC | |
AMiner | 40 per class | HeCo: 80.53ยฑ0.7 | 83.29ยฑ1.3 | Micro-F1 |
40 per class | HeCo: 92.11ยฑ0.6 | 94.41ยฑ0.8 | AUC | |
Industry | Full dataset | HGT: 0.7982 | 0.8025 | AUC |
๐ DiffGraph Neural Framework
โโโ ๐ฅ DiffGraph-Rec/ # Link Prediction Engine
โ โโโ ๐ง Model.py # Core HGDM Implementation
โ โโโ ๐ DataHandler.py # Multi-behavior Data Processing
โ โโโ โ๏ธ main.py # Training & Evaluation Pipeline
โ โโโ ๐๏ธ params.py # Hyperparameter Configuration
โ โโโ ๐๏ธ data/ # Heterogeneous Datasets
โ โ โโโ tmall/ # E-commerce Multi-behavior
โ โ โโโ retail_rocket/ # Transaction Networks
โ โ โโโ ijcai_15/ # Competition Benchmark
โ โโโ ๐ ๏ธ Utils/ # Neural Utilities
โโโ ๐ฏ DiffGraph_NC/ # Node Classification Engine
โ โโโ ๐ง Model.py # Academic Network HGDM
โ โโโ ๐ DataHandler.py # Citation Network Processing
โ โโโ โ๏ธ main.py # Classification Pipeline
โ โโโ ๐๏ธ params.py # Configuration Matrix
โ โโโ ๐๏ธ data/ # Academic Datasets
โ โ โโโ dblp/ # Database & AI Publications
โ โ โโโ aminer/ # Research Network
โ โโโ ๐ ๏ธ Utils/ # Classification Tools
โโโ ๐ README.md # This Neural Manual
Latent Heterogeneous Graph Diffusion Process:
๐ขโ* โญ^ฯ ๐โ* โ^ฯ ๐ฬโ* โ^ฯ' ๐ฬโ* โญ^ฯ' ๐ขฬโ*
Forward Diffusion Trajectory:
q(โโ | โโโโ) = ๐ฉ(โโ; โ(1-ฮฒโ)โโโโ, ฮฒโ๐)
Reverse Denoising Process:
p(โโโโ | โโ) = ๐ฉ(โโโโ; ฮผฮธ(โโ,t), ฮฃฮธ(โโ,t))
- ๐ Latent Space Revolution: First heterogeneous graph diffusion in latent space, solving discrete graph generation challenges
- ๐ Cross-View Intelligence: Novel auxiliary-to-target semantic transformation mechanism
- ๐ก๏ธ Noise Resilience: Superior robustness against heterogeneous data corruption
- โก Scalable Architecture: Linear complexity with heterogeneous relation types
Task | Dataset | Scale | Domain |
---|---|---|---|
Link Prediction | Tmall | 31K users, 31K items | E-commerce Multi-behavior |
Retail Rocket | 2K users, 30K items | Transaction Networks | |
IJCAI-15 | 17K users, 36K items | Competition Benchmark | |
Node Classification | DBLP | 26K nodes, 4 classes | Academic Publications |
AMiner | 56K nodes, 4 classes | Research Networks | |
Industry | 2M+ users | Gaming Platform |
Complete dataset details available in paper appendix
Analysis Type | Key Finding | Performance Impact |
---|---|---|
๐งฉ Ablation Study | Diffusion module crucial | -11.0% without diffusion |
โ๏ธ Hyperparameters | Optimal: 64-dim, 3-layers | Best at moderate complexity |
๐ก๏ธ Noise Robustness | Superior resilience | 50% less degradation vs baselines |
โก Efficiency | 2.6x faster training | Computational advantage |
๐ Data Sparsity | Consistent gains | +31.4% on sparse data |
๐ Click to view detailed analysis
Variant | Description | Tmall R@20 | Change |
---|---|---|---|
DiffGraph | Full model | 0.0589 | - |
-D | Remove diffusion | 0.0524 | -11.0% |
-H | Remove heterogeneous | 0.0463 | -21.4% |
DAE | Replace w/ autoencoder | 0.0531 | -9.8% |
Behavior | DiffGraph Retention | HGT Retention |
---|---|---|
Page View | 97.42% | 95.59% |
Favorite | 98.62% | 97.22% |
Cart | 96.73% | 95.82% |
- Sparse Users (< 8 interactions): +31.4% improvement
- Medium Users (< 35 interactions): +25.1% improvement
- Active Users (< 120 interactions): +19.4% improvement
Category | Baseline Methods | DiffGraph Improvement |
---|---|---|
๐ Link Prediction | MATN, HGT, MBGCN | +15-40% Recall@20 |
๐ฏ Node Classification | HeCo, HAN, HGT | +1-2% Micro-F1 |
๐ก๏ธ Noise Robustness | All baselines | 50% less degradation |
โก Training Efficiency | HGT, MBGCN | 2.6x faster convergence |
Comprehensive comparison with 15+ SOTA methods
@inproceedings{li2025diffgraph,
title={DiffGraph: Heterogeneous Graph Diffusion Model},
author={Li, Zongwei and Xia, Lianghao and Hua, Hua and Zhang, Shijie and Wang, Shuangyang and Huang, Chao},
booktitle={Proceedings of the Eighteenth ACM International Conference on Web Search and Data Mining},
pages={--},
year={2025},
organization={ACM}
}
๐ฏ Principal Investigators
- Zongwei Li - University of Hong Kong ๐ญ๐ฐ
- Lianghao Xia - University of Hong Kong ๐ญ๐ฐ
- Chao Huang - University of Hong Kong ๐ญ๐ฐ
๐ Industry Partners
- Hua Hua - Tencent Research
- Shuangyang Wang - Tencent AI Lab
- Shijie Zhang - Social Computing Center
๐ Responsible AI Development
- โ Privacy-preserving implementations
- โ Bias-aware model design
- โ Transparent algorithmic decisions
- โ Reproducible research standards
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ๐ Star this repository if DiffGraph powers your research! โ
โ ๐ฌ Open issues for scientific discussions and improvements โ
โ ๐ค Contribute to the future of heterogeneous graph AI โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Made with ๐ง AI and โค๏ธ Science
"The future belongs to those who understand that in the complexity of heterogeneous graphs lies the key to artificial general intelligence."
โญ Star us on GitHub | ๐ง Contact: [email protected] | ๐ Lab: HKU Data Science