|
| 1 | +<?xml version="1.0" encoding="UTF-8"?> |
| 2 | +<doi_batch xmlns="http://www.crossref.org/schema/5.3.1" |
| 3 | + xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" |
| 4 | + xmlns:rel="http://www.crossref.org/relations.xsd" |
| 5 | + xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" |
| 6 | + version="5.3.1" |
| 7 | + xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd"> |
| 8 | + <head> |
| 9 | + <doi_batch_id>20250805131945-e7bb1b0da818a07db6673fe34902095fb50510b4</doi_batch_id> |
| 10 | + <timestamp>20250805131945</timestamp> |
| 11 | + <depositor> |
| 12 | + <depositor_name>JOSS Admin</depositor_name> |
| 13 | + < email_address> [email protected]</ email_address> |
| 14 | + </depositor> |
| 15 | + <registrant>The Open Journal</registrant> |
| 16 | + </head> |
| 17 | + <body> |
| 18 | + <journal> |
| 19 | + <journal_metadata> |
| 20 | + <full_title>Journal of Open Source Software</full_title> |
| 21 | + <abbrev_title>JOSS</abbrev_title> |
| 22 | + <issn media_type="electronic">2475-9066</issn> |
| 23 | + <doi_data> |
| 24 | + <doi>10.21105/joss</doi> |
| 25 | + <resource>https://joss.theoj.org</resource> |
| 26 | + </doi_data> |
| 27 | + </journal_metadata> |
| 28 | + <journal_issue> |
| 29 | + <publication_date media_type="online"> |
| 30 | + <month>08</month> |
| 31 | + <year>2025</year> |
| 32 | + </publication_date> |
| 33 | + <journal_volume> |
| 34 | + <volume>10</volume> |
| 35 | + </journal_volume> |
| 36 | + <issue>112</issue> |
| 37 | + </journal_issue> |
| 38 | + <journal_article publication_type="full_text"> |
| 39 | + <titles> |
| 40 | + <title>sleev: An R Package for Semiparametric Likelihood Estimation with Errors in Variables</title> |
| 41 | + </titles> |
| 42 | + <contributors> |
| 43 | + <person_name sequence="first" contributor_role="author"> |
| 44 | + <given_name>Jiangmei</given_name> |
| 45 | + <surname>Xiong</surname> |
| 46 | + <affiliations> |
| 47 | + <institution><institution_name>Department of Biostatistics, Vanderbilt University Medical Center, USA</institution_name></institution> |
| 48 | + </affiliations> |
| 49 | + <ORCID>https://orcid.org/0000-0002-7481-765X</ORCID> |
| 50 | + </person_name> |
| 51 | + <person_name sequence="additional" |
| 52 | + contributor_role="author"> |
| 53 | + <given_name>Sarah C.</given_name> |
| 54 | + <surname>Lotspeich</surname> |
| 55 | + <affiliations> |
| 56 | + <institution><institution_name>Department of Statistical Sciences, Wake Forest University, USA</institution_name></institution> |
| 57 | + </affiliations> |
| 58 | + <ORCID>https://orcid.org/0000-0001-5380-2427</ORCID> |
| 59 | + </person_name> |
| 60 | + <person_name sequence="additional" |
| 61 | + contributor_role="author"> |
| 62 | + <given_name>Joey B.</given_name> |
| 63 | + <surname>Sherrill</surname> |
| 64 | + <affiliations> |
| 65 | + <institution><institution_name>Brigham Young University, USA</institution_name></institution> |
| 66 | + </affiliations> |
| 67 | + <ORCID>https://orcid.org/0009-0002-2741-0475</ORCID> |
| 68 | + </person_name> |
| 69 | + <person_name sequence="additional" |
| 70 | + contributor_role="author"> |
| 71 | + <given_name>Gustavo</given_name> |
| 72 | + <surname>Amorim</surname> |
| 73 | + <affiliations> |
| 74 | + <institution><institution_name>Department of Biostatistics, Vanderbilt University Medical Center, USA</institution_name></institution> |
| 75 | + </affiliations> |
| 76 | + <ORCID>https://orcid.org/0000-0002-2941-5360</ORCID> |
| 77 | + </person_name> |
| 78 | + <person_name sequence="additional" |
| 79 | + contributor_role="author"> |
| 80 | + <given_name>Bryan E.</given_name> |
| 81 | + <surname>Shepherd</surname> |
| 82 | + <affiliations> |
| 83 | + <institution><institution_name>Department of Biostatistics, Vanderbilt University Medical Center, USA</institution_name></institution> |
| 84 | + </affiliations> |
| 85 | + <ORCID>https://orcid.org/0000-0002-3758-5992</ORCID> |
| 86 | + </person_name> |
| 87 | + <person_name sequence="additional" |
| 88 | + contributor_role="author"> |
| 89 | + <given_name>Ran</given_name> |
| 90 | + <surname>Tao</surname> |
| 91 | + <affiliations> |
| 92 | + <institution><institution_name>Department of Biostatistics, Vanderbilt University Medical Center, USA</institution_name></institution> |
| 93 | + <institution><institution_name>Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA</institution_name></institution> |
| 94 | + </affiliations> |
| 95 | + <ORCID>https://orcid.org/0000-0002-1106-2923</ORCID> |
| 96 | + </person_name> |
| 97 | + </contributors> |
| 98 | + <publication_date> |
| 99 | + <month>08</month> |
| 100 | + <day>05</day> |
| 101 | + <year>2025</year> |
| 102 | + </publication_date> |
| 103 | + <pages> |
| 104 | + <first_page>7320</first_page> |
| 105 | + </pages> |
| 106 | + <publisher_item> |
| 107 | + <identifier id_type="doi">10.21105/joss.07320</identifier> |
| 108 | + </publisher_item> |
| 109 | + <ai:program name="AccessIndicators"> |
| 110 | + <ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> |
| 111 | + <ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> |
| 112 | + <ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref> |
| 113 | + </ai:program> |
| 114 | + <rel:program> |
| 115 | + <rel:related_item> |
| 116 | + <rel:description>Software archive</rel:description> |
| 117 | + <rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.16622343</rel:inter_work_relation> |
| 118 | + </rel:related_item> |
| 119 | + <rel:related_item> |
| 120 | + <rel:description>GitHub review issue</rel:description> |
| 121 | + <rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7320</rel:inter_work_relation> |
| 122 | + </rel:related_item> |
| 123 | + </rel:program> |
| 124 | + <doi_data> |
| 125 | + <doi>10.21105/joss.07320</doi> |
| 126 | + <resource>https://joss.theoj.org/papers/10.21105/joss.07320</resource> |
| 127 | + <collection property="text-mining"> |
| 128 | + <item> |
| 129 | + <resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07320.pdf</resource> |
| 130 | + </item> |
| 131 | + </collection> |
| 132 | + </doi_data> |
| 133 | + <citation_list> |
| 134 | + <citation key="duan2016empirical"> |
| 135 | + <article_title>An empirical study for impacts of measurement errors on EHR based association studies</article_title> |
| 136 | + <author>Duan</author> |
| 137 | + <journal_title>AMIA annual symposium proceedings</journal_title> |
| 138 | + <volume>2016</volume> |
| 139 | + <cYear>2016</cYear> |
| 140 | + <unstructured_citation>Duan, R., Cao, M., Wu, Y., Huang, J., Denny, J. C., Xu, H., & Chen, Y. (2016). An empirical study for impacts of measurement errors on EHR based association studies. AMIA Annual Symposium Proceedings, 2016, 1764.</unstructured_citation> |
| 141 | + </citation> |
| 142 | + <citation key="tao2021efficient"> |
| 143 | + <article_title>Efficient semiparametric inference for two-phase studies with outcome and covariate measurement errors</article_title> |
| 144 | + <author>Tao</author> |
| 145 | + <journal_title>Statistics in medicine</journal_title> |
| 146 | + <issue>3</issue> |
| 147 | + <volume>40</volume> |
| 148 | + <doi>10.1002/sim.8799</doi> |
| 149 | + <cYear>2021</cYear> |
| 150 | + <unstructured_citation>Tao, R., Lotspeich, S. C., Amorim, G., Shaw, P. A., & Shepherd, B. E. (2021). Efficient semiparametric inference for two-phase studies with outcome and covariate measurement errors. Statistics in Medicine, 40(3), 725–738. https://doi.org/10.1002/sim.8799</unstructured_citation> |
| 151 | + </citation> |
| 152 | + <citation key="lotspeich2022efficient"> |
| 153 | + <article_title>Efficient odds ratio estimation under two-phase sampling using error-prone data from a multi-national HIV research cohort</article_title> |
| 154 | + <author>Lotspeich</author> |
| 155 | + <journal_title>Biometrics</journal_title> |
| 156 | + <issue>4</issue> |
| 157 | + <volume>78</volume> |
| 158 | + <doi>10.1111/biom.13512</doi> |
| 159 | + <cYear>2022</cYear> |
| 160 | + <unstructured_citation>Lotspeich, S. C., Shepherd, B. E., Amorim, G. G., Shaw, P. A., & Tao, R. (2022). Efficient odds ratio estimation under two-phase sampling using error-prone data from a multi-national HIV research cohort. Biometrics, 78(4), 1674–1685. https://doi.org/10.1111/biom.13512</unstructured_citation> |
| 161 | + </citation> |
| 162 | + <citation key="schumaker2007spline"> |
| 163 | + <volume_title>Spline functions: Basic theory</volume_title> |
| 164 | + <author>Schumaker</author> |
| 165 | + <doi>10.1017/CBO9780511618994</doi> |
| 166 | + <cYear>2007</cYear> |
| 167 | + <unstructured_citation>Schumaker, L. (2007). Spline functions: Basic theory. Cambridge University Press. https://doi.org/10.1017/CBO9780511618994</unstructured_citation> |
| 168 | + </citation> |
| 169 | + <citation key="tao2017efficient"> |
| 170 | + <article_title>Efficient semiparametric inference under two-phase sampling, with applications to genetic association studies</article_title> |
| 171 | + <author>Tao</author> |
| 172 | + <journal_title>Journal of the American Statistical Association</journal_title> |
| 173 | + <issue>520</issue> |
| 174 | + <volume>112</volume> |
| 175 | + <doi>10.1080/01621459.2017.1295864</doi> |
| 176 | + <cYear>2017</cYear> |
| 177 | + <unstructured_citation>Tao, R., Zeng, D., & Lin, D. Y. (2017). Efficient semiparametric inference under two-phase sampling, with applications to genetic association studies. Journal of the American Statistical Association, 112(520), 1468–1476. https://doi.org/10.1080/01621459.2017.1295864</unstructured_citation> |
| 178 | + </citation> |
| 179 | + <citation key="murphy2000profile"> |
| 180 | + <article_title>On profile likelihood</article_title> |
| 181 | + <author>Murphy</author> |
| 182 | + <journal_title>Journal of the American Statistical Association</journal_title> |
| 183 | + <issue>450</issue> |
| 184 | + <volume>95</volume> |
| 185 | + <doi>10.2307/2669386</doi> |
| 186 | + <cYear>2000</cYear> |
| 187 | + <unstructured_citation>Murphy, S. A., & Van der Vaart, A. W. (2000). On profile likelihood. Journal of the American Statistical Association, 95(450), 449–465. https://doi.org/10.2307/2669386</unstructured_citation> |
| 188 | + </citation> |
| 189 | + <citation key="giganti2020accounting"> |
| 190 | + <article_title>Accounting for dependent errors in predictors and time-to-event outcomes using electronic health records, validation samples, and multiple imputation</article_title> |
| 191 | + <author>Giganti</author> |
| 192 | + <journal_title>The annals of applied statistics</journal_title> |
| 193 | + <issue>2</issue> |
| 194 | + <volume>14</volume> |
| 195 | + <doi>10.1214/20-aoas1343</doi> |
| 196 | + <cYear>2020</cYear> |
| 197 | + <unstructured_citation>Giganti, M. J., Shaw, P. A., Chen, G., Bebawy, S. S., Turner, M. M., Sterling, T. R., & Shepherd, B. E. (2020). Accounting for dependent errors in predictors and time-to-event outcomes using electronic health records, validation samples, and multiple imputation. The Annals of Applied Statistics, 14(2), 1045. https://doi.org/10.1214/20-aoas1343</unstructured_citation> |
| 198 | + </citation> |
| 199 | + <citation key="decon"> |
| 200 | + <article_title>Deconvolution estimation in measurement error models: The R package decon</article_title> |
| 201 | + <author>Wang</author> |
| 202 | + <journal_title>Journal of statistical software</journal_title> |
| 203 | + <volume>39</volume> |
| 204 | + <doi>10.18637/jss.v039.i10</doi> |
| 205 | + <cYear>2011</cYear> |
| 206 | + <unstructured_citation>Wang, X. F., & Wang, B. (2011). Deconvolution estimation in measurement error models: The R package decon. Journal of Statistical Software, 39, 1–24. https://doi.org/10.18637/jss.v039.i10</unstructured_citation> |
| 207 | + </citation> |
| 208 | + <citation key="mecor"> |
| 209 | + <article_title>Mecor: An R package for measurement error correction in linear regression models with a continuous outcome</article_title> |
| 210 | + <author>Nab</author> |
| 211 | + <journal_title>Computer methods and programs in biomedicine</journal_title> |
| 212 | + <volume>208</volume> |
| 213 | + <doi>10.1016/j.cmpb.2021.106238</doi> |
| 214 | + <cYear>2021</cYear> |
| 215 | + <unstructured_citation>Nab, L., Smeden, M. van, Keogh, R. H., & Groenwold, R. H. (2021). Mecor: An R package for measurement error correction in linear regression models with a continuous outcome. Computer Methods and Programs in Biomedicine, 208, 106238. https://doi.org/10.1016/j.cmpb.2021.106238</unstructured_citation> |
| 216 | + </citation> |
| 217 | + <citation key="SIMEX"> |
| 218 | + <volume_title>Simex: SIMEX- and MCSIMEX-algorithm for measurement error models</volume_title> |
| 219 | + <author>Lederer</author> |
| 220 | + <doi>10.32614/CRAN.package.simex</doi> |
| 221 | + <cYear>2019</cYear> |
| 222 | + <unstructured_citation>Lederer, W., & Seibold, H. (2019). Simex: SIMEX- and MCSIMEX-algorithm for measurement error models. https://doi.org/10.32614/CRAN.package.simex</unstructured_citation> |
| 223 | + </citation> |
| 224 | + <citation key="Rlanguage"> |
| 225 | + <volume_title>R: A language and environment for statistical computing</volume_title> |
| 226 | + <author>R Core Team</author> |
| 227 | + <doi>10.32614/r.manuals</doi> |
| 228 | + <cYear>2024</cYear> |
| 229 | + <unstructured_citation>R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://doi.org/10.32614/r.manuals</unstructured_citation> |
| 230 | + </citation> |
| 231 | + <citation key="augSIMEX"> |
| 232 | + <article_title>R package for analysis of data with mixed measurement error and misclassification in covariates: augSIMEX</article_title> |
| 233 | + <author>Zhang</author> |
| 234 | + <journal_title>Journal of Statistical Computation and Simulation</journal_title> |
| 235 | + <issue>12</issue> |
| 236 | + <volume>89</volume> |
| 237 | + <doi>10.1080/00949655.2019.1615911</doi> |
| 238 | + <cYear>2019</cYear> |
| 239 | + <unstructured_citation>Zhang, Q., & Yi, G. Y. (2019). R package for analysis of data with mixed measurement error and misclassification in covariates: augSIMEX. Journal of Statistical Computation and Simulation, 89(12), 2293–2315. https://doi.org/10.1080/00949655.2019.1615911</unstructured_citation> |
| 240 | + </citation> |
| 241 | + <citation key="attenuation"> |
| 242 | + <volume_title>Attenuation: Correcting for attenuation due to measurement error</volume_title> |
| 243 | + <author>Moss</author> |
| 244 | + <doi>10.32614/CRAN.package.attenuation</doi> |
| 245 | + <cYear>2019</cYear> |
| 246 | + <unstructured_citation>Moss, J. (2019). Attenuation: Correcting for attenuation due to measurement error. https://doi.org/10.32614/CRAN.package.attenuation</unstructured_citation> |
| 247 | + </citation> |
| 248 | + <citation key="GLSME"> |
| 249 | + <article_title>Interpreting the evolutionary regression: The interplay between observational and biological errors in phylogenetic comparative studies</article_title> |
| 250 | + <author>Hansen</author> |
| 251 | + <journal_title>Systematic Biology</journal_title> |
| 252 | + <issue>3</issue> |
| 253 | + <volume>61</volume> |
| 254 | + <doi>10.1093/sysbio/syr122</doi> |
| 255 | + <cYear>2012</cYear> |
| 256 | + <unstructured_citation>Hansen, T. F., & Bartoszek, K. (2012). Interpreting the evolutionary regression: The interplay between observational and biological errors in phylogenetic comparative studies. Systematic Biology, 61(3), 413–425. https://doi.org/10.1093/sysbio/syr122</unstructured_citation> |
| 257 | + </citation> |
| 258 | + <citation key="meerva"> |
| 259 | + <volume_title>meerva: Analysis of data with measurement error using a validation subsample</volume_title> |
| 260 | + <author>Kremers</author> |
| 261 | + <doi>10.32614/CRAN.package.meerva</doi> |
| 262 | + <cYear>2021</cYear> |
| 263 | + <unstructured_citation>Kremers, W. K. (2021). meerva: Analysis of data with measurement error using a validation subsample. https://doi.org/10.32614/CRAN.package.meerva</unstructured_citation> |
| 264 | + </citation> |
| 265 | + <citation key="mmc"> |
| 266 | + <volume_title>mmc: Multivariate measurement error correction</volume_title> |
| 267 | + <author>Song</author> |
| 268 | + <doi>10.32614/CRAN.package.mmc</doi> |
| 269 | + <cYear>2015</cYear> |
| 270 | + <unstructured_citation>Song, J. (2015). mmc: Multivariate measurement error correction. https://doi.org/10.32614/CRAN.package.mmc</unstructured_citation> |
| 271 | + </citation> |
| 272 | + <citation key="refitME"> |
| 273 | + <volume_title>refitME: Measurement error modelling using MCEM</volume_title> |
| 274 | + <author>Stoklosa</author> |
| 275 | + <doi>10.32614/CRAN.package.refitME</doi> |
| 276 | + <cYear>2021</cYear> |
| 277 | + <unstructured_citation>Stoklosa, J., Hwang, W., & Warton, D. (2021). refitME: Measurement error modelling using MCEM. https://doi.org/10.32614/CRAN.package.refitME</unstructured_citation> |
| 278 | + </citation> |
| 279 | + <citation key="eivtools"> |
| 280 | + <volume_title>eivtools: Measurement error modeling tools</volume_title> |
| 281 | + <author>Lockwood</author> |
| 282 | + <doi>10.32614/CRAN.package.eivtools</doi> |
| 283 | + <cYear>2018</cYear> |
| 284 | + <unstructured_citation>Lockwood, J. R. (2018). eivtools: Measurement error modeling tools. https://doi.org/10.32614/CRAN.package.eivtools</unstructured_citation> |
| 285 | + </citation> |
| 286 | + <citation key="fuller2009measurement"> |
| 287 | + <volume_title>Measurement error models</volume_title> |
| 288 | + <author>Fuller</author> |
| 289 | + <doi>10.1002/9780470316665</doi> |
| 290 | + <cYear>2009</cYear> |
| 291 | + <unstructured_citation>Fuller, W. A. (2009). Measurement error models. John Wiley & Sons. https://doi.org/10.1002/9780470316665</unstructured_citation> |
| 292 | + </citation> |
| 293 | + </citation_list> |
| 294 | + </journal_article> |
| 295 | + </journal> |
| 296 | + </body> |
| 297 | +</doi_batch> |
0 commit comments