Skip to content

Detect the Apple Accelerate/vecLib runtime #135

Open
@ogrisel

Description

@ogrisel

It is now possible to install numpy, scipy... with a BLAS implementation that links to the macOS Accelerate library via conda-forge:

But at the moment, threadpoolctl does not recognize this BLAS implementation. I tested the following on a macOS/M1 machines:

mamba create -n accelerate numpy "libblas=*=*accelerate" threadpoolctl
mamba activate accelerate
python -m threadpoolctl -i numpy
[]

Output of mamba list:

# packages in environment at /Users/ogrisel/mambaforge/envs/accelerate:
#
# Name                    Version                   Build  Channel
bzip2                     1.0.8                h3422bc3_4    conda-forge
ca-certificates           2022.12.7            h4653dfc_0    conda-forge
libblas                   3.9.0           16_osxarm64_accelerate    conda-forge
libcblas                  3.9.0           16_osxarm64_accelerate    conda-forge
libcxx                    15.0.7               h75e25f2_0    conda-forge
libffi                    3.4.2                h3422bc3_5    conda-forge
libgfortran               5.0.0           12_2_0_hd922786_31    conda-forge
libgfortran5              12.2.0              h0eea778_31    conda-forge
liblapack                 3.9.0           16_osxarm64_accelerate    conda-forge
libsqlite                 3.40.0               h76d750c_0    conda-forge
libzlib                   1.2.13               h03a7124_4    conda-forge
llvm-openmp               16.0.0               h7cfbb63_0    conda-forge
ncurses                   6.3                  h07bb92c_1    conda-forge
numpy                     1.24.2          py311h60f8152_0    conda-forge
openssl                   3.1.0                h03a7124_0    conda-forge
pip                       23.0.1             pyhd8ed1ab_0    conda-forge
python                    3.11.0          h3ba56d0_1_cpython    conda-forge
python_abi                3.11                    3_cp311    conda-forge
readline                  8.2                  h92ec313_1    conda-forge
setuptools                67.6.0             pyhd8ed1ab_0    conda-forge
threadpoolctl             3.1.0              pyh8a188c0_0    conda-forge
tk                        8.6.12               he1e0b03_0    conda-forge
tzdata                    2023b                h71feb2d_0    conda-forge
wheel                     0.40.0             pyhd8ed1ab_0    conda-forge
xz                        5.2.6                h57fd34a_0    conda-forge

Even if we cannot detect the number of threads it would be helpful to detect that numpy and/or scipy rely on Accelerate.

For CI purposes, we could probably leverage Cirrus CI to gain access to macOS/arm64 machines. Alternatively we could try with the standard macOS/x86_64 CI on Azure.

EDIT: GitHub Actions now also has macOS M1 runners by default.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions