|
| 1 | +# Copyright 2025 The HuggingFace Team. All rights reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import logging |
| 16 | +from typing import Dict, Union |
| 17 | + |
| 18 | +from packaging.version import parse |
| 19 | +from tabulate import tabulate |
| 20 | +from torch.export import ExportedProgram |
| 21 | +import coremltools as ct |
| 22 | +import torch |
| 23 | + |
| 24 | +from executorch import version as executorch_version |
| 25 | +from executorch.backends.apple.coreml.partition import CoreMLPartitioner |
| 26 | +from executorch.backends.apple.coreml.compiler import CoreMLBackend |
| 27 | + |
| 28 | +from executorch.devtools.backend_debug import get_delegation_info |
| 29 | +from executorch.exir import ( |
| 30 | + EdgeCompileConfig, |
| 31 | + ExecutorchBackendConfig, |
| 32 | + ExecutorchProgram, |
| 33 | + to_edge_transform_and_lower, |
| 34 | +) |
| 35 | +from optimum.executorch.passes.remove_padding_idx_embedding_pass import RemovePaddingIdxEmbeddingPass |
| 36 | +from executorch.backends.apple.coreml.quantizer import CoreMLQuantizer |
| 37 | +from torchao.quantization.pt2e.quantize_pt2e import convert_pt2e, prepare_pt2e |
| 38 | +from ..integrations import ( |
| 39 | + CausalLMExportableModule, |
| 40 | + MaskedLMExportableModule, |
| 41 | + Seq2SeqLMExportableModule, |
| 42 | +) |
| 43 | +from ..recipe_registry import register_recipe |
| 44 | + |
| 45 | +def get_quantization_config(): |
| 46 | + quantization_config = ct.optimize.torch.quantization.LinearQuantizerConfig.from_dict( |
| 47 | + { |
| 48 | + "global_config": { |
| 49 | + "quantization_scheme": ct.optimize.torch.quantization.QuantizationScheme.symmetric, |
| 50 | + "activation_dtype": torch.quint8, |
| 51 | + "weight_dtype": torch.qint8, |
| 52 | + "weight_per_channel": True, |
| 53 | + } |
| 54 | + } |
| 55 | + ) |
| 56 | + return quantization_config |
| 57 | + |
| 58 | +def quantize_program(ep): |
| 59 | + quantizer = CoreMLQuantizer(get_quantization_config()) |
| 60 | + gm = ep.module() |
| 61 | + |
| 62 | + args, kwargs = ep.example_inputs |
| 63 | + prepared_model = prepare_pt2e(gm, quantizer) |
| 64 | + prepared_model(*args, **kwargs) |
| 65 | + converted_model = convert_pt2e(prepared_model) |
| 66 | + return torch.export.export(converted_model, args, kwargs) |
| 67 | + |
| 68 | + |
| 69 | +@register_recipe("coreml") |
| 70 | +def export_to_executorch_with_coreml( |
| 71 | + model: Union[CausalLMExportableModule, MaskedLMExportableModule, Seq2SeqLMExportableModule], |
| 72 | + **kwargs, |
| 73 | +): |
| 74 | + """ |
| 75 | + Export a PyTorch model to ExecuTorch w/ delegation to CoreML backend. |
| 76 | +
|
| 77 | + This function also write metadata required by the ExecuTorch runtime to the model. |
| 78 | +
|
| 79 | + Args: |
| 80 | + model (Union[CausalLMExportableModule, MaskedLMExportableModule, Seq2SeqLMExportableModule]): |
| 81 | + The PyTorch model to be exported to ExecuTorch. |
| 82 | + **kwargs: |
| 83 | + Additional keyword arguments for recipe-specific configurations, e.g. export using different example inputs, or different compile/bechend configs. |
| 84 | +
|
| 85 | + Returns: |
| 86 | + Dict[str, ExecutorchProgram]: |
| 87 | + A map of exported and optimized program for ExecuTorch. |
| 88 | + For encoder-decoder models or multimodal models, it may generate multiple programs. |
| 89 | + """ |
| 90 | + |
| 91 | + def _lower_to_executorch( |
| 92 | + exported_programs: Dict[str, ExportedProgram], |
| 93 | + metadata=None, |
| 94 | + **kwargs, |
| 95 | + ) -> Dict[str, ExecutorchProgram]: |
| 96 | + |
| 97 | + minimum_deployment_target = kwargs.get("minimum_ios_deployment_target", "15") |
| 98 | + minimum_deployment_target = { |
| 99 | + "15": ct.target.iOS15, |
| 100 | + "16": ct.target.iOS16, |
| 101 | + "17": ct.target.iOS17, |
| 102 | + "18": ct.target.iOS18, |
| 103 | + }[minimum_deployment_target] |
| 104 | + |
| 105 | + compute_precision = kwargs.get("compute_precision", "fp16") |
| 106 | + compute_precision = { |
| 107 | + "fp16": ct.precision.FLOAT16, |
| 108 | + "fp32": ct.precision.FLOAT32, |
| 109 | + }[compute_precision] |
| 110 | + |
| 111 | + model_type = kwargs.get("model_type", "model") |
| 112 | + model_type = { |
| 113 | + "model": CoreMLBackend.MODEL_TYPE.MODEL, |
| 114 | + "modelc": CoreMLBackend.MODEL_TYPE.COMPILED_MODEL, |
| 115 | + }[model_type] |
| 116 | + take_over_mutable_buffer = kwargs.get("take_over_mutable_buffer", True) |
| 117 | + quantize = kwargs.get("quantize", False) |
| 118 | + |
| 119 | + et_progs = {} |
| 120 | + backend_config_dict = {} |
| 121 | + for pte_name, exported_program in exported_programs.items(): |
| 122 | + logging.debug(f"\nExported program for {pte_name}.pte: {exported_program}") |
| 123 | + if quantize: |
| 124 | + exported_program = quantize_program(exported_program) |
| 125 | + et_progs[pte_name] = to_edge_transform_and_lower( |
| 126 | + exported_program, |
| 127 | + partitioner=[CoreMLPartitioner( |
| 128 | + compile_specs=CoreMLBackend.generate_compile_specs( |
| 129 | + minimum_deployment_target=minimum_deployment_target, |
| 130 | + compute_precision=compute_precision, |
| 131 | + model_type=model_type, |
| 132 | + ), |
| 133 | + take_over_mutable_buffer=take_over_mutable_buffer, # Fails when set to true |
| 134 | + )], |
| 135 | + compile_config=EdgeCompileConfig( |
| 136 | + _check_ir_validity=False, |
| 137 | + _skip_dim_order=True, |
| 138 | + ), |
| 139 | + constant_methods=metadata, |
| 140 | + ).to_executorch( |
| 141 | + config=ExecutorchBackendConfig(**backend_config_dict), |
| 142 | + ) |
| 143 | + logging.debug( |
| 144 | + f"\nExecuTorch program for {pte_name}.pte: {et_progs[pte_name].exported_program().graph_module}" |
| 145 | + ) |
| 146 | + delegation_info = get_delegation_info(et_progs[pte_name].exported_program().graph_module) |
| 147 | + logging.debug(f"\nDelegation info Summary for {pte_name}.pte: {delegation_info.get_summary()}") |
| 148 | + logging.debug( |
| 149 | + f"\nDelegation info for {pte_name}.pte: {tabulate(delegation_info.get_operator_delegation_dataframe(), headers='keys', tablefmt='fancy_grid')}" |
| 150 | + ) |
| 151 | + return et_progs |
| 152 | + |
| 153 | + exported_progs = model.export() |
| 154 | + return _lower_to_executorch(exported_progs, model.metadata, **kwargs) |
0 commit comments