Skip to content

Commit 65d9930

Browse files
committed
new release
1 parent 330e138 commit 65d9930

File tree

4 files changed

+6
-20
lines changed

4 files changed

+6
-20
lines changed

CITATION.cff

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ authors:
66
- family-names: Vongthongsri
77
given-names: Kritin
88
title: deepeval
9-
version: 3.1.0
9+
version: 3.1.1
1010
date-released: "2025-06-08"
1111
url: https://confident-ai.com
1212
repository-code: https://github.com/confident-ai/deepeval

deepeval/_version.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
__version__: str = "3.1.0"
1+
__version__: str = "3.1.1"

docs/docs/multimodal-metrics-g-eval.mdx

Lines changed: 3 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ To create a custom metric that uses MLLMs for evaluation, simply instantiate an
3535

3636
```python
3737
from deepeval.metrics import MultimodalGEval
38-
from deepeval.test_case import MLLMTestCaseParams, MLLMTestCase
38+
from deepeval.test_case import MLLMTestCaseParams, MLLMTestCase, MLLMImage
3939

4040
m_test_case = MLLMTestCase(
4141
input=["Show me how to fold an airplane"],
@@ -52,7 +52,8 @@ text_image_coherence = MultimodalGEval(
5252
evaluation_params=[MLLMTestCaseParams.ACTUAL_OUTPUT],
5353
)
5454

55-
evaluate(test_cases=[m_test_case], metrics=[text_image_coherence])
55+
text_image_coherence.measure(m_test_case)
56+
print(text_image_coherence.score, text_image_coherence.reason)
5657
```
5758

5859
There are **THREE** mandatory and **SEVEN** optional parameters required when instantiating an `MultimodalGEval` class:
@@ -116,21 +117,6 @@ Note that `score_range` ranges from **0 - 10, inclusive** and different `Rubric`
116117
This is an optional improvement done by `deepeval` in addition to the original implementation in the `GEval` paper.
117118
:::
118119

119-
### As a standalone
120-
121-
You can also run `GEval` on a single test case as a standalone, one-off execution.
122-
123-
```python
124-
...
125-
126-
text_image_coherence.measure(test_case)
127-
print(text_image_coherence.score, text_image_coherence.reason)
128-
```
129-
130-
:::caution
131-
This is great for debugging or if you wish to build your own evaluation pipeline, but you will **NOT** get the benefits (testing reports, Confident AI platform) and all the optimizations (speed, caching, computation) the `evaluate()` function or `deepeval test run` offers.
132-
:::
133-
134120
## How Is It Calculated?
135121

136122
The `MultimodalGEval` is an adapted version of [`GEval`](/docs/metrics-llm-evals), so alike `GEval`, the `MultimodalGEval` metric is a two-step algorithm that first generates a series of `evaluation_steps` using chain of thoughts (CoTs) based on the given `criteria`, before using the generated `evaluation_steps` to determine the final score using the `evaluation_params` provided through the `MLLMTestCase`.

pyproject.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
[tool.poetry]
22
name = "deepeval"
3-
version = "3.1.0"
3+
version = "3.1.1"
44
description = "The LLM Evaluation Framework"
55
authors = ["Jeffrey Ip <[email protected]>"]
66
license = "Apache-2.0"

0 commit comments

Comments
 (0)