Open
Description
Hi, I was converting GFPGANv1.3.pth to onnx format. But I got a error when I try to inference.
onnx: 1.17.0
onnxruntime: 1.19.2
torch: 2.4.1+cu121
onnxsim: 0.4.36
import torch
import onnx
import onnxruntime as ort
from onnxsim import simplify
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
def convert_static_GFPGANv1Clean_1_3_onnx():
onnx_path = "./pretrained/GFPGANv1.3.onnx"
sim_onnx_path = "./pretrained/GFPGANv1.3_sim.onnx"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_path = 'experiments/pretrained_models/GFPGANv1.3.pth'
inference_model = GFPGANv1Clean(
out_size=512,
num_style_feat=512,
channel_multiplier=2,
decoder_load_path=None,
fix_decoder=False,
num_mlp=8,
input_is_latent=True,
different_w=True,
narrow=1,
sft_half=True).to(device)
loadnet = torch.load(model_path)
if 'params_ema' in loadnet:
keyname = 'params_ema'
else:
keyname = 'params'
#inference_model.load_state_dict(loadnet[keyname], strict=True)
inference_model.load_state_dict(loadnet[keyname], strict=False)
inference_model = inference_model.eval()
img_path = input_image_path
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
img = cv2.resize(input_img, (512, 512))
cropped_face_t = img2tensor(img / 255., bgr2rgb=True, float32=True)
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
mat1 = torch.randn(3, 512, 512).cpu() # moving the tensor to cpu
mat1 = mat1.unsqueeze(0).to(device)
return_rgb=False
torch.onnx.export(inference_model, # model being run
(cropped_face_t, return_rgb), # model input (or a tuple for multiple inputs)
onnx_path, # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True, # whether to execute constant folding for optimization
verbose=True,
input_names=['input'], # the model's input names
output_names=['out_ab'] # the model's output names
)
print("export GFPGANv1.3 onnx done.")
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
model_simp, check = simplify(onnx_model, check_n=3)
onnx.save(model_simp, sim_onnx_path)
print("export GFPGANv1.3 onnx sim done.")
convert_static_GFPGANv1Clean_1_3_onnx()
// Inference
import onnxruntime as ort
session = ort.InferenceSession("pretrained/GFPGANv1.3.onnx")
# Prepare input
input_name = session.get_inputs()[0].name
input_data = prepare_input_data(input_image_path)
# Run inference
outputs = session.run(None, {input_name: input_data})
# Process the output
output = post_process_output(outputs)
output_im = Image.fromarray(output)
Error:
[/usr/local/lib/python3.10/dist-packages/onnxruntime/capi/onnxruntime_inference_collection.py](https://localhost:8080/#) in _create_inference_session(self, providers, provider_options, disabled_optimizers)
489
490 # initialize the C++ InferenceSession
--> 491 sess.initialize_session(providers, provider_options, disabled_optimizers)
492
493 self._sess = sess
NotImplemented: [ONNXRuntimeError] : 9 : NOT_IMPLEMENTED : Could not find an implementation for LeakyRelu(6) node with name '/stylegan_decoder/style_conv1/activate/LeakyRelu'
`` `
Metadata
Metadata
Assignees
Labels
No labels