Skip to content

Commit f9e606c

Browse files
committed
Updating...
1 parent 3fa4dad commit f9e606c

File tree

148 files changed

+28764
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

148 files changed

+28764
-0
lines changed

.gitignore

Lines changed: 42 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,42 @@
1+
.DS_Store
2+
__pycache__
3+
/TEMP
4+
/DATASETS
5+
/RUNTIME
6+
*.pyd
7+
hubert_base.pt
8+
.venv
9+
alexforkINSTALL.bat
10+
Changelog_CN.md
11+
Changelog_EN.md
12+
Changelog_KO.md
13+
difdep.py
14+
EasierGUI.py
15+
envfilescheck.bat
16+
export_onnx.py
17+
export_onnx_old.py
18+
ffmpeg.exe
19+
ffprobe.exe
20+
Fixes/Launch_Tensorboard.bat
21+
Fixes/LOCAL_CREPE_FIX.bat
22+
Fixes/local_fixes.py
23+
Fixes/tensor-launch.py
24+
gui.py
25+
infer-web backup.py
26+
infer-webbackup.py
27+
install_easy_dependencies.py
28+
install_easyGUI.bat
29+
installstft.bat
30+
Launch_Tensorboard.bat
31+
listdepend.bat
32+
LOCAL_CREPE_FIX.bat
33+
local_fixes.py
34+
oldinfer.py
35+
onnx_inference_demo.py
36+
Praat.exe
37+
requirementsNEW.txt
38+
rmvpe.pt
39+
run_easiergui.bat
40+
tensor-launch.py
41+
values1.json
42+
使用需遵守的协议-LICENSE.txt

Dockerfile

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
# syntax=docker/dockerfile:1
2+
3+
FROM python:3.10-bullseye
4+
5+
EXPOSE 7865
6+
7+
WORKDIR /app
8+
9+
COPY . .
10+
11+
RUN pip3 install -r requirements.txt
12+
13+
CMD ["python3", "infer-web.py"]

LICENSE

Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
MIT License
2+
3+
Copyright (c) 2023 liujing04
4+
Copyright (c) 2023 源文雨
5+
6+
Permission is hereby granted, free of charge, to any person obtaining a copy
7+
of this software and associated documentation files (the "Software"), to deal
8+
in the Software without restriction, including without limitation the rights
9+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10+
copies of the Software, and to permit persons to whom the Software is
11+
furnished to do so, subject to the following conditions:
12+
13+
The above copyright notice and this permission notice shall be included in all
14+
copies or substantial portions of the Software.
15+
16+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22+
SOFTWARE.

LazyImport.py

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
from importlib.util import find_spec, LazyLoader, module_from_spec
2+
from sys import modules
3+
4+
def lazyload(name):
5+
if name in modules:
6+
return modules[name]
7+
else:
8+
spec = find_spec(name)
9+
loader = LazyLoader(spec.loader)
10+
module = module_from_spec(spec)
11+
modules[name] = module
12+
loader.exec_module(module)
13+
return module

MDXNet.py

Lines changed: 272 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,272 @@
1+
import soundfile as sf
2+
import torch, pdb, os, warnings, librosa
3+
import numpy as np
4+
import onnxruntime as ort
5+
from tqdm import tqdm
6+
import torch
7+
8+
dim_c = 4
9+
10+
11+
class Conv_TDF_net_trim:
12+
def __init__(
13+
self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
14+
):
15+
super(Conv_TDF_net_trim, self).__init__()
16+
17+
self.dim_f = dim_f
18+
self.dim_t = 2**dim_t
19+
self.n_fft = n_fft
20+
self.hop = hop
21+
self.n_bins = self.n_fft // 2 + 1
22+
self.chunk_size = hop * (self.dim_t - 1)
23+
self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
24+
device
25+
)
26+
self.target_name = target_name
27+
self.blender = "blender" in model_name
28+
29+
out_c = dim_c * 4 if target_name == "*" else dim_c
30+
self.freq_pad = torch.zeros(
31+
[1, out_c, self.n_bins - self.dim_f, self.dim_t]
32+
).to(device)
33+
34+
self.n = L // 2
35+
36+
def stft(self, x):
37+
x = x.reshape([-1, self.chunk_size])
38+
x = torch.stft(
39+
x,
40+
n_fft=self.n_fft,
41+
hop_length=self.hop,
42+
window=self.window,
43+
center=True,
44+
return_complex=True,
45+
)
46+
x = torch.view_as_real(x)
47+
x = x.permute([0, 3, 1, 2])
48+
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
49+
[-1, dim_c, self.n_bins, self.dim_t]
50+
)
51+
return x[:, :, : self.dim_f]
52+
53+
def istft(self, x, freq_pad=None):
54+
freq_pad = (
55+
self.freq_pad.repeat([x.shape[0], 1, 1, 1])
56+
if freq_pad is None
57+
else freq_pad
58+
)
59+
x = torch.cat([x, freq_pad], -2)
60+
c = 4 * 2 if self.target_name == "*" else 2
61+
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
62+
[-1, 2, self.n_bins, self.dim_t]
63+
)
64+
x = x.permute([0, 2, 3, 1])
65+
x = x.contiguous()
66+
x = torch.view_as_complex(x)
67+
x = torch.istft(
68+
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
69+
)
70+
return x.reshape([-1, c, self.chunk_size])
71+
72+
73+
def get_models(device, dim_f, dim_t, n_fft):
74+
return Conv_TDF_net_trim(
75+
device=device,
76+
model_name="Conv-TDF",
77+
target_name="vocals",
78+
L=11,
79+
dim_f=dim_f,
80+
dim_t=dim_t,
81+
n_fft=n_fft,
82+
)
83+
84+
85+
warnings.filterwarnings("ignore")
86+
cpu = torch.device("cpu")
87+
if torch.cuda.is_available():
88+
device = torch.device("cuda:0")
89+
elif torch.backends.mps.is_available():
90+
device = torch.device("mps")
91+
else:
92+
device = torch.device("cpu")
93+
94+
95+
class Predictor:
96+
def __init__(self, args):
97+
self.args = args
98+
self.model_ = get_models(
99+
device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
100+
)
101+
self.model = ort.InferenceSession(
102+
os.path.join(args.onnx, self.model_.target_name + ".onnx"),
103+
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
104+
)
105+
print("onnx load done")
106+
107+
def demix(self, mix):
108+
samples = mix.shape[-1]
109+
margin = self.args.margin
110+
chunk_size = self.args.chunks * 44100
111+
assert not margin == 0, "margin cannot be zero!"
112+
if margin > chunk_size:
113+
margin = chunk_size
114+
115+
segmented_mix = {}
116+
117+
if self.args.chunks == 0 or samples < chunk_size:
118+
chunk_size = samples
119+
120+
counter = -1
121+
for skip in range(0, samples, chunk_size):
122+
counter += 1
123+
124+
s_margin = 0 if counter == 0 else margin
125+
end = min(skip + chunk_size + margin, samples)
126+
127+
start = skip - s_margin
128+
129+
segmented_mix[skip] = mix[:, start:end].copy()
130+
if end == samples:
131+
break
132+
133+
sources = self.demix_base(segmented_mix, margin_size=margin)
134+
"""
135+
mix:(2,big_sample)
136+
segmented_mix:offset->(2,small_sample)
137+
sources:(1,2,big_sample)
138+
"""
139+
return sources
140+
141+
def demix_base(self, mixes, margin_size):
142+
chunked_sources = []
143+
progress_bar = tqdm(total=len(mixes))
144+
progress_bar.set_description("Processing")
145+
for mix in mixes:
146+
cmix = mixes[mix]
147+
sources = []
148+
n_sample = cmix.shape[1]
149+
model = self.model_
150+
trim = model.n_fft // 2
151+
gen_size = model.chunk_size - 2 * trim
152+
pad = gen_size - n_sample % gen_size
153+
mix_p = np.concatenate(
154+
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
155+
)
156+
mix_waves = []
157+
i = 0
158+
while i < n_sample + pad:
159+
waves = np.array(mix_p[:, i : i + model.chunk_size])
160+
mix_waves.append(waves)
161+
i += gen_size
162+
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
163+
with torch.no_grad():
164+
_ort = self.model
165+
spek = model.stft(mix_waves)
166+
if self.args.denoise:
167+
spec_pred = (
168+
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
169+
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
170+
)
171+
tar_waves = model.istft(torch.tensor(spec_pred))
172+
else:
173+
tar_waves = model.istft(
174+
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
175+
)
176+
tar_signal = (
177+
tar_waves[:, :, trim:-trim]
178+
.transpose(0, 1)
179+
.reshape(2, -1)
180+
.numpy()[:, :-pad]
181+
)
182+
183+
start = 0 if mix == 0 else margin_size
184+
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
185+
if margin_size == 0:
186+
end = None
187+
sources.append(tar_signal[:, start:end])
188+
189+
progress_bar.update(1)
190+
191+
chunked_sources.append(sources)
192+
_sources = np.concatenate(chunked_sources, axis=-1)
193+
# del self.model
194+
progress_bar.close()
195+
return _sources
196+
197+
def prediction(self, m, vocal_root, others_root, format):
198+
os.makedirs(vocal_root, exist_ok=True)
199+
os.makedirs(others_root, exist_ok=True)
200+
basename = os.path.basename(m)
201+
mix, rate = librosa.load(m, mono=False, sr=44100)
202+
if mix.ndim == 1:
203+
mix = np.asfortranarray([mix, mix])
204+
mix = mix.T
205+
sources = self.demix(mix.T)
206+
opt = sources[0].T
207+
if format in ["wav", "flac"]:
208+
sf.write(
209+
"%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
210+
)
211+
sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
212+
else:
213+
path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
214+
path_other = "%s/%s_others.wav" % (others_root, basename)
215+
sf.write(path_vocal, mix - opt, rate)
216+
sf.write(path_other, opt, rate)
217+
if os.path.exists(path_vocal):
218+
os.system(
219+
"ffmpeg -i %s -vn %s -q:a 2 -y"
220+
% (path_vocal, path_vocal[:-4] + ".%s" % format)
221+
)
222+
if os.path.exists(path_other):
223+
os.system(
224+
"ffmpeg -i %s -vn %s -q:a 2 -y"
225+
% (path_other, path_other[:-4] + ".%s" % format)
226+
)
227+
228+
229+
class MDXNetDereverb:
230+
def __init__(self, chunks):
231+
self.onnx = "uvr5_weights/onnx_dereverb_By_FoxJoy"
232+
self.shifts = 10 #'Predict with randomised equivariant stabilisation'
233+
self.mixing = "min_mag" # ['default','min_mag','max_mag']
234+
self.chunks = chunks
235+
self.margin = 44100
236+
self.dim_t = 9
237+
self.dim_f = 3072
238+
self.n_fft = 6144
239+
self.denoise = True
240+
self.pred = Predictor(self)
241+
242+
def _path_audio_(self, input, vocal_root, others_root, format):
243+
self.pred.prediction(input, vocal_root, others_root, format)
244+
245+
246+
if __name__ == "__main__":
247+
dereverb = MDXNetDereverb(15)
248+
from time import time as ttime
249+
250+
t0 = ttime()
251+
dereverb._path_audio_(
252+
"雪雪伴奏对消HP5.wav",
253+
"vocal",
254+
"others",
255+
)
256+
t1 = ttime()
257+
print(t1 - t0)
258+
259+
260+
"""
261+
262+
runtime\python.exe MDXNet.py
263+
264+
6G:
265+
15/9:0.8G->6.8G
266+
14:0.8G->6.5G
267+
25:炸
268+
269+
half15:0.7G->6.6G,22.69s
270+
fp32-15:0.7G->6.6G,20.85s
271+
272+
"""

0 commit comments

Comments
 (0)