You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: Labs/02. Arithmetic-logic unit/README.md
+15-12Lines changed: 15 additions & 12 deletions
Original file line number
Diff line number
Diff line change
@@ -4,7 +4,7 @@
4
4
5
5
## Цель
6
6
7
-
Используя навыки по описанию мультиплексоров, писать блок арифметико-логического устройства (АЛУ) на языке SystemVerilog.
7
+
Используя навыки по описанию мультиплексоров, описать блок арифметико-логического устройства (АЛУ) на языке SystemVerilog.
8
8
9
9
## Материалы для подготовки к лабораторной работе
10
10
@@ -24,25 +24,27 @@
24
24
25
25
Также, кроме результата операций, АЛУ формирует флаги, которые показывают выполняется ли заданное условие. Например, выведет `1`, если один операнд меньше другого.
26
26
27
-
Обычно АЛУ представляет собой комбинационную схему (то есть без элементов памяти), на входы которой поступают информационные (операнды) и управляющие (код операции) сигналы, в ответ на что на выходе появляется результат заданной операции. АЛУ бывает не комбинационной схемой, но это скорее исключение.
27
+
Обычно АЛУ представляет собой комбинационную схему (то есть не имеет элементов памяти), на входы которой поступают информационные (операнды) и управляющие (код операции) сигналы, в ответ на что на выходе появляется результат заданной операции. АЛУ бывает не комбинационной схемой, но это скорее исключение.
_Рисунок 1. Структурное обозначение элемента АЛУ[1, стр. 305]._
31
+
_Рисунок 1. Структурное обозначение элемента АЛУ[[1, стр. 305]](https://reader.lanbook.com/book/97336?lms=57991a6f83ced8530d7f0759ce4b95b7)._
32
32
33
33
На рис. 1 изображен пример АЛУ, используемый в книге "Цифровая схемотехника и архитектура компьютера" Харрис и Харрис. На входы `A` и `B` поступают операнды с разрядностью _N_. На 3-битный вход `F` подается код операции. Например, если туда подать `000`, то на выходе `Y` появится результат операции _логическое И_ между битами операндов `A` и `B`. Если на `F` подать `010`, то на выходе появится результат сложения. Это лишь пример, разрядность и коды могут отличаться в зависимости от количества выполняемых операций и архитектуры.
34
34
35
-
Существует несколько подходов к реализации АЛУ, отличающиеся внутренней организацией. В лабораторных работах применяется повсеместно используемый подход мультиплексирования операций, то есть подключения нескольких операционных устройств (которые выполняют какие-то операции, например сложения, логическое И и т.п.) к мультиплексору, который будет передавать результат нужного операционного устройства на выходы АЛУ.
35
+
Существует несколько подходов к реализации АЛУ, отличающиеся внутренней организацией. В лабораторных работах применяется повсеместно используемый подход мультиплексирования операций, то есть подключения нескольких операционных устройств (которые выполняют какие-то операции, например сложения, логического И и т.п.) к мультиплексору, который будет передавать результат нужного операционного устройства на выходы АЛУ.
36
36
37
-
Рассмотрим на примере все того же АЛУ MIPS из книги Харрисов. На рис. 2, в левой его части, изображена внутренняя организация этого АЛУ, справа – таблица соответствия кодов операциям. На выходе схемы (внизу) стоит четырехвходовый мультиплексор, управляемый двумя из трех битов `F`. К его входам подключены _N_ логических И (побитовое И _N_-битных операндов), _N_ логических ИЛИ, _N_-битный сумматор и Zero Extend – устройство делающее из 1-битного числа _N_-битное число, дополняя нулями слева.
38
-
39
-
К одному из входов этих операционных устройств подключен `A` без изменений, а ко второму подключен выход двухвходового мультиплексора, управляемого оставшимся битом _F_. То есть `F[2]` определяет, что будет вторым операндом: `B` или `~B`. Вдобавок `F[2]` подается на входной перенос сумматора, то есть, когда `F[2] == 1` на выходе сумматора появляется результат операции `A + ~B + 1`, что (с учетом [дополнительного кода](https://ru.wikipedia.org/wiki/Дополнительный_код)) эквивалентно `A – B`.
37
+
Рассмотрим данный подход на примере все того же АЛУ MIPS из книги Харрисов. На рис. 2, в левой его части, изображена внутренняя организация этого АЛУ, справа – таблица соответствия кодов операциям. На выходе схемы (внизу) стоит 4-входовой мультиплексор, управляемый двумя из трех битов `F`. К его входам подключены _N_ логических И (побитовое И _N_-битных операндов), _N_ логических ИЛИ, _N_-битный сумматор и Zero Extend – устройство, дополняющее слева нулями 1-битное число до N-битного.
_Рисунок 2. Структурная схема АЛУ MIPS[1, стр. 305]._
41
+
_Рисунок 2. Структурная схема АЛУ MIPS[[1, стр. 305]](https://reader.lanbook.com/book/97336?lms=57991a6f83ced8530d7f0759ce4b95b7)._
42
+
43
+
К одному из входов этих операционных устройств подключен без изменений вход `A`, а ко второму подключен выход двухвходового мультиплексора, управляемого оставшимся битом _F_. То есть `F[2]` определяет, что будет вторым операндом: `B` или `~B`. Вдобавок `F[2]` подается на входной перенос сумматора, то есть, когда `F[2] == 1` на выходе сумматора появляется результат операции `A + ~B + 1`, что (с учетом [дополнительного кода](https://ru.wikipedia.org/wiki/Дополнительный_код)) эквивалентно `A – B`.
44
+
45
+
Посмотрим, что произойдет, если на вход `F` такого АЛУ подать `111`. Будет выполняться операция `SLT`(сокращение от `Set Less Then`) – выдать `1`, если `A` меньше `B`, в противном случае — выдать `0`. Биты `F[1:0]` переключат мультиплексор на выход блока Zero Extend. На вход Zero Extend поступает старший бит выхода сумматора, этот бит отвечает за знак результата. Так как `F[2] == 1`, сумматор вычисляет `A + ~B + 1`, то есть `A – B`. Если `A < B`, то результат вычитания будет отрицательный, а старший бит `Y[N-1] == 1`. Если `A` не меньше `B`, то разность будет неотрицательна, а `Y[N-1] == 0`, как и требуется от этой операции.
44
46
45
-
Посмотрим, что произойдет, если на вход `F` такого АЛУ подать `111`. Будет выполняться операция `SLT`(сокращение от `Set Less Then`) – выдать `1`, если `A` меньше `B`, в противном случае — выдать `0`. Биты `F[1:0]` переключат мультиплексор на выход блока Zero Extend. На вход Zero Extend поступает старший бит выхода сумматора, этот бит отвечает за знак результата. Так как `F[2] == 1`, сумматор вычисляет `A + ~B + 1`, то есть `A – B`, значит, если `A < B`, то результат вычитания будет отрицательный, а старший бит `Y[N-1] == 1`. Если `A` не меньше `B`, то разность будет неотрицательна, а `Y[N-1] == 0`, как и требуется от этой операции.
47
+
Сравнение двух чисел несколько сложнее чем просто проверка старшего бита разности и зависит от того, сравниваем ли мы знаковые числа или беззнаковые. Если знаковые — то произошло ли переполнение. Для простоты схемы, принято, что схема реализует операцию SLT для знаковых пар чисел, разность которых не вызывает переполнения [[2, 307]](https://reader.lanbook.com/book/241166?lms=1b8d65a957786d4b32b8201bd30e97f3).
@@ -58,7 +60,7 @@ _Рисунок 3. Пример исполнения операции АЛУ._
58
60
59
61
### Параметры
60
62
61
-
Очень удобным на практике оказывается использование параметров. Параметры добавляют модулю гибкости, позволяя убрать "магические" константы из описания модулей, подставляя вместо них выразительное символьное имя. Параметры отдаленно схожи с макросами `#define` в языке Си, однако стоит понимать, параметры используются на этапе синтеза схемы, в отличие от макросов в языке Си, которые заменяются препроцессором еще до этапа компиляции.
63
+
Очень удобным на практике оказывается использование параметров. Параметры добавляют модулю гибкости, позволяя убрать ["магические"](https://ru.wikipedia.org/wiki/Магическое_число_(программирование)#Плохая_практика_программирования) константы из описания модулей, подставляя вместо них выразительное символьное имя. Параметры отдаленно схожи с макросами `#define` в языке Си, однако стоит понимать, что это не одно и то же. Дефайны представляют собой специальные текстовые макросы, которые автоматически заменяются на этапе препроцессора (как если бы вы прошлись по всем файлам своего кода и вручную заменили бы макросы на их значения). Например, с помощью дефайнов можно писать целые куски кода, а не просто одно какое-то число. При этом у дефайнов глобальная область видимости (объявив их в одном месте, этот макрос будет доступен во всем последующем коде). Параметр в свою очередь может хранить только значение какого-то конкретного типа (т.е. в параметр нельзя поместить фрагмент кода) а область видимости параметра ограничена тем модулем, где он был объявлен.
62
64
63
65
Допустим, ваше устройство должно включить тостер, если на вход ему придет сигнал `32'haf3c5bd0`. Человек, не знакомый с устройством, при прочтении этого кода будет недоумевать, что это за число и почему используется именно оно. Однако, скрыв его за параметром `TOASTER_EN`, читающий поймет, что это код включения тостера. Кроме того, если некоторая константа должна использоваться в нескольких местах кода, то определив её через в виде параметра, можно будет менять её в одном месте, и она тут же поменяется везде.
Для стандартного набора целочисленных операций архитектуры RISC-V требуется выполнять 16 различных операций. Для кодирования 16 операций было бы достаточно 4 бит, но в лабораторной работе предлагается использовать 5-битный код, что связано с особенностями кодирования инструкций. Видно, что старший бит кода операции указывает на то, является ли операция вычислительной или это операция сравнения.
210
+
Для стандартного набора целочисленных операций архитектуры RISC-V требуется выполнять 16 различных операций. Для кодирования 16 операций было бы достаточно 4 бит, но в лабораторной работе предлагается использовать 5-битный код, что связано с особенностями кодирования инструкций. Старший бит кода операции указывает на то, является ли операция вычислительной или это операция сравнения.
209
211
210
212
Для удобства чтения, список инструкций разбит на две таблицы.
211
213
@@ -310,4 +312,5 @@ _Рисунок 4. Пример схемы, реализующей АЛУ._
310
312
311
313
## Список использованной литературы
312
314
313
-
1. Д.М. Харрис, С.Л. Харрис / Цифровая схемотехника и архитектура компьютера / пер. с англ. Imagination Technologies / М.: ДМК Пресс, 2018.
315
+
1.[Д.М. Харрис, С.Л. Харрис / Цифровая схемотехника и архитектура компьютера / пер. с англ. Imagination Technologies / М.: ДМК Пресс, 2018](https://e.lanbook.com/book/97336).
316
+
2.[Д.М. Харрис, С.Л. Харрис / Цифровая схемотехника и архитектура компьютера: RISC-V / пер. с англ. В. С. Яценков, А. Ю. Романов; под. ред. А. Ю. Романова / М.: ДМК Пресс, 2021](https://e.lanbook.com/book/241166).
0 commit comments