Skip to content

norm = np.ones((pred.shape[0], 2)) * np.array([h, w]) / 10 #6

@wonss737

Description

@wonss737

In the accuracy function in evaluate.py, predicted keypoint coordinate is normalized by [h,w] / 10. For example, if heatmap size is (64,48), normalization factor is (64,48).

But, the 'pred', which is the output of 'get_max_preds' function, has [w,h] scale. (e.g, [34, 58], [40, 50]). So I think the normalization factor should be [w, h].

Thank you :)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions