Skip to content

Question: How to correctly generate NOCS maps for BOP datasets (YCBV/HOPE)? #1196

@YufengJin

Description

@YufengJin

Describe the issue

Hi BlenderProc team,

I'm trying to generate NOCS maps using objects from BOP datasets like YCBV and HOPE. While the rendering pipeline for RGB and depth works well, the NOCS maps I get look incorrect or inconsistent (see image below).

Image

I have a few questions:

  1. Is NOCS rendering in BlenderProc only intended for ShapeNetCore objects?
  2. Do I need to normalize the BOP object meshes (e.g., center at origin, scale to unit cube)?
  3. Could the quality of the NOCS maps be affected by the mesh resolution or number of vertices?

Any advice on generating meaningful NOCS maps for BOP objects would be greatly appreciated.

Thanks in advance!

Minimal code example

mport blenderproc as bproc
import argparse
import os
import numpy as np

parser = argparse.ArgumentParser()
parser.add_argument('bop_parent_path', nargs='?', help="Path to the bop datasets parent directory")
parser.add_argument('bop_dataset_name', nargs='?', help="Main BOP dataset")
parser.add_argument('output_dir', nargs='?', help="Path to where the final files will be saved ")
args = parser.parse_args()

bproc.init()

# load specified bop objects into the scene
bop_objs = bproc.loader.load_bop_objs(bop_dataset_path=os.path.join(args.bop_parent_path, args.bop_dataset_name),
                                      mm2m=True,
                                      obj_ids=[1, 1, 3])

# load BOP datset intrinsics
bproc.loader.load_bop_intrinsics(bop_dataset_path=os.path.join(args.bop_parent_path, args.bop_dataset_name))
...
...
...
for _ in range(5):

    # Sample object poses and check collisions 
    bproc.object.sample_poses(objects_to_sample=bop_objs,
                              sample_pose_func=sample_pose_func,
                              max_tries=1000)

    # BVH tree used for camera obstacle checks
    bop_bvh_tree = bproc.object.create_bvh_tree_multi_objects(bop_objs)

    poses = 0
    # Render two camera poses
    while poses < 2:
        # Sample location
        location = bproc.sampler.shell(center=[0, 0, 0],
                                       radius_min=1,
                                       radius_max=1.2,
                                       elevation_min=1,
                                       elevation_max=89,
                                       uniform_volume=False)
        # Determine point of interest in scene as the object closest to the mean of a subset of objects
        poi = bproc.object.compute_poi(bop_objs)
        # Compute rotation based on vector going from location towards poi
        rotation_matrix = bproc.camera.rotation_from_forward_vec(poi - location,
                                                                 inplane_rot=np.random.uniform(-0.7854, 0.7854))
        # Add homog cam pose based on location an rotation
        cam2world_matrix = bproc.math.build_transformation_mat(location, rotation_matrix)

        # Check that obstacles are at least 0.3 meter away from the camera and make sure the view interesting enough
        if bproc.camera.perform_obstacle_in_view_check(cam2world_matrix, {"min": 0.3}, bop_bvh_tree):
            # Persist camera pose
            bproc.camera.add_camera_pose(cam2world_matrix,
                                         frame=poses)
            poses += 1

    # render the cameras of the current scene
    data = bproc.renderer.render()
    data.update(bproc.renderer.render_nocs())

bproc.writer.write_hdf5(os.path.join(args.output_dir, 'noc_data'), data)

Files required to run the code

No response

Expected behavior

Image

BlenderProc version

v2.8

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions